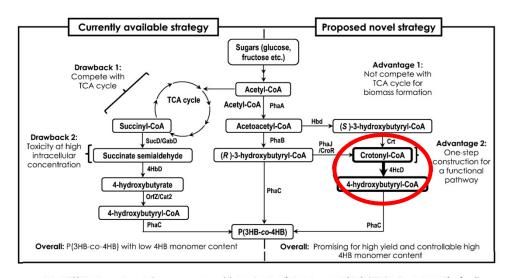

ポリ(3-ヒドロキシブタン酸-co-4-ヒドロキシブタン酸)共重合の製造法

【発明の概要】


安価なバイオマスを基本炭素源として、海洋分解性が高く柔軟性に富むポリ (3-ヒドロキシブタン酸-co-4-ヒドロキシブタン酸) (P(3HB-co-4HB)) を微生物 において生産する方法を構築した。

P(3HB-co-4HB): 海洋分解性が高く柔軟性に富むプラスチック

P(3HB-co-4HB)の製造方法

- ・ 従来(下図左): TCA回路(カルビン回路)中のスクシニル-CoAから3段階の反応により4HB-CoAを生成し、(R)-3HB-CoAと共重合する→安全性の懸念があり得られる4-ヒドロキシブタン酸(4HB)ユニット分率が低い。
- 今回構築した新規な製造方法(下図右):クロトニル-CoAから4-ヒドロキシブチリル-CoAを生成する触媒活性を有する4-ヒドロキシブタン酸-CoAデヒドラターゼ(4HcD)遺伝子を組み込んだクプリアヴィダス・ネカトール株が、グルコースを原料として4HBユニット分率の高いP(3HB-*co*-4HB)を製造できる。

4HcD導入Cupriavidus necator株によるグルコース炭素源からのPHA生合成

Cupriavidus necator strain	Time (h)	Dry cell weight (g/L)	Residual cell weight (g/L)	PHA content (wt%)	PHA (g/L)	4HB (mol%)
NSDG-GG∆B1	72	2.2	1.03	55.5	1.22	0
NSDG-GG∆B1/pBPP-4HcD	72	1.68	0.83	50.5	0.85	2.76
	120	2.42	0.94	60.9	1.48	5.43

1%グルコース含有窒素源制限無機塩培地、30℃、60 strokes/min

本技術のアピールポイント

P(3HB-co-4HB)共重合体を、前駆体を添加することなく糖類から、安全かつ効率的に製造できる

Tokyo Tech

お問い合わせ先:

東京工業大学 研究·産学連携本部 E-mail::yasumatsu@sangaku.fitech.ac.jp TEL: 03-5734-7634 URA 安松 浩

用途分野

生分解性プラスチック

特許情報

発明の名称 ポリ(3-ヒドロキシブタン酸-co-4

-ヒドロキシブタン酸) 共重合の製造法

発明者 福居 俊昭、ホング カイ ヒー

出願番号 2022-032185(2022/03/02出願、未公開)

本学整理番号 21T160